1.什么是大系统理论[1]
2.大系统理论的形成和发展[1]
早期的控制论和运筹学主要处理中小型非复杂系理论和应用的发展,复杂的大系统、巨系统成为系统主要关心的对象,大系统理论就被提出来了。
由于科技和生产实践活动的规模只益庞大,科技度日益增加,所涉及的范围亦越来越广。在20世纪人们在研究实际系统时不断发现新问题、带进新思想观点、创造了新方法,在现代控制理论、运筹规划理技术的基础上形成了跨学科的大系统理论。如1959年我国的秦元勋教授在研究飞机自动驾驶仪设计时,从工程技术处理方法提出了大系统稳定性分解的概念,刘永清教授把这种概念应用在三门峡水电站闸门提升的电力拖动非线性控制系统中,用标量和李亚曾诺夫函数分解法,成功地分析了这个大系统的稳定性。有趣的是,现代控制理论的应用导致了一个两级的分散控制结构,从实际数据到实际控制的映射通常是在两级上完成的,其中一个称为战略(经济)级,另一个称为战术(稳定)级。战略级的功能是产生理想的系统响应,常使用一个欲优化的目标函数,进行离线计算;战术级可用多变量战术反馈控制器设计。
科技界经过二十多年的努力探讨和实践,目前大系统理论虽不能说成熟完善,但可说已发展到本质水平,其实际应用也取得了可喜的进展,这方面的论文和专著很多。如法国国家科学研究中心的铁特里教授领导、著名学者塔穆勒教授和辛格博士等参加的递阶最优化研究小组,把大系统递阶最优化理论用于建造炼锌工厂和硫磺工厂的递阶控制、太阳能电站的递阶控制、石化复杂过程精炼工段的递阶控制、长途电讯网络管理、英国剑河河水污染控制、热轧钢厂粗轧过程钢带出口温度和厚度的控制等问题,都取得了明显的效益。再如罗马尼亚的学者应用大系统理论建立了经济数学模型:宏观经济方面有静态和动态投入—产出表、技术进步的定量模型、部一级投资最优化模型;微观经济方面研究企业之间和企业内部的工段、车间和工种之间的最佳分配、生产配合、库存最优等,这些研究对罗马尼亚的国民经济的发展起到了很好的指导作用。
铁特里为代表的学派侧重于实际系统模型的研究;以M.D.Mesarovic为代表的美国Case西部储备大学系统研究中心的学派是以集论为基础建立复杂决策,制定系统的数学原理和目标;波兰科学院以R.K.Kulikows Ki为代表的学派是利用管理学、运筹学和数学规划等领域的概念,应用泛函分析理论为工具来研究多级分解的方法。国外还有一些有成就的学派不再列举了。
总之,大系统理论目前仍在发展,其应用于实际系统也取得了明显的效果。我国以秦元勋教授为首在大系统稳定性方面,虽然在20世纪60年代初期做了一些开创性的工作,但在“文革”中中断了该课题的研究,直至20世纪70年代末期才又开始活跃起来,从理论到应用正在奋起直追,出了不少论文和专著。在应用上如浙大的吕勇哉在首钢搞的钢铁递阶控制很成功,提高产量30%。
将大系统理论用于解决军事系统方面的问题,其中发展比较迅速,比较突出的是军用航空航天、火力控制与指挥、指自动化系统等领域。随着军事技术的发展,原来的大系统也渐成为中小系统,变成了新的大系统的一个分系统。从而,大系统理论在军事领域的应用产生了更高的要求和更新的战。如,对于区域化、大区域化作战问题中的指挥、控制、信等方面的研究,都是近年来的军事大系统领域出现的新题,亟待应用大系统理论对其进行合理的分析和解决。
3.大系统理论的基本内容[2]
大系统理论的基本内容可以概括为两个方面:
(1)大系统分析。所谓“分析”,是对已有的大系统或设计方案进行定性的和定量的、静态的和动态的理论分析或试验研究。其中包括:对系统的环境条件、外部影响因素的分析,对系统现有的运行状态和性能的估算,对系统的未来发展趋势和动态进行预测等,以便对系统的技术性能、经济指标、社会效果、生态影响等各方面作出正确评价,为改善现有系统的运行效能、改进系统组织与管理、选取系统设计方案,提供系统分析的科学依据。
(2)大系统综合。所谓“综合”,是对尚待筹建或改建的大系统进行规划决策与方案设计,制订协调计划与组织管理制度,进行系统结构综合与参数综合,解决大系统的最优设计、最优控制、最优管理问题,以求所筹建的或扩建的大系统运行经济合理、技术先进、稳定可靠、协调有序,收到优化的经济效益和社会效益。大系统的“分析”与“综合”是相辅相成的:系统分析为系统综合提供依据,系统综合又为系统分析提出问题。
大系统理论中有代表性的是“分解协调”方法。也就是把复杂大问题化为简单小问题。
为了研究不同领域(工程技术、社会经济、生物生态)的各种大系统,需要抽象出它们的共性。因此,大系统理论主要研究各种大系统的控制与信息过程的共同规律与方法。例如,大系统的结构方案问题。大系统的基本结构方案有:集中控制、分散控制、递阶控制。递阶控制是集中控制与分散控制相结合的产物,是各种大系统普遍采用的结构方案。在工程技术领域,递阶控制是工业生产过程综合自动化系统的多级计算机控制与管理的典型方案。在社会经济领域,如国家行政管理系统、军队组织体系、经营管理系统等,都采取递阶控制结构方案。在生物生态领域,如人与脊椎动物的中枢神经系统,也具有多级递阶控制结构。同时,值得注意的是,随着科学技术发展,生产过程自动化系统由集中控制发展为递阶控制;随着生物进化,生物控制系统也由单神经节发展为多级神经系统。这种发展进化过程的相似性,不同领域中各种大系统结构的相似性,也正是大系统共性的体现。
目前的大系统理论主要是控制理论与运筹学相结合的产物,是以数学模型为基础的。作为综合自动化系统的理论和动态系统工程的方法,是系统科学发展的前沿。由于大系统的复杂性及数学模型方法的局限性,大系统理论需要进一步发展与创新。
4.大系统理论的应用[3]
实际上,现代管理所面临的对象大多属于大系统。它们不仅规模大、因素多、相互联系复杂,而且目标多样,功能综合,尤其是“管理人”、自动化机器以及加速变化的环境因素等,交叉作用,综合效应,使管理系统的最优控制更加复杂和困难。这就要求正确运用大系统论和方法来研究、处理现代管理问题,以实现最优化的或满意的整体控制目标。
1.管理大系统分析
它是指对已有的大系统及其设计方案,进行定性和定量的理论分析和实际研究。包括对管理大系统的环境条件以及内部各子系统之间的物质、能量和信息联系的分析;对大系统现有运行状况的估计和对其未来发展趋势的预测;等等。以便对其技术性能、经济指标、社会效果,生态影响等作出评价,寻找改进现有性能和运行效率的途径,为选择最优决策和控制方案等,提供理论方法和实验依据。
2.管理大系统综合
这是指对将要筹建或改建的管理大系统,进行规划决策,总体设计,对筹建过程和实际运动实施计划协调、组织管理,从而解决管理大系统的最优设计、控制和管理等问题。这里需要指出的是,整合原则在管理大系统综合中具有重要作用,是实现管理大系统综合的有效手段和途径。
3.管理大系统的分解和协调
在绝大多数管理大系统研究和设计中,传统的演绎法和归纳法往往是不够用的。它首先就不能回答管理大系统最优的目标是什么。即使有可能知道其整体最优目标,也难以找到如何建构能够确保实现最优目标的管理大系统。但是,如果我们按如下思路来考查:当管理大系统整体没有可能成为最优化对象的时候,首先考虑将多变量的复杂系统按一定方式和原则进行“系统分割”,将管理大系统(S)分割为几个子系统(S1,S2,S3……Sn)。然后分别解决各子系统的分析和综合,并求局部最优化。最后根据管理大系统的总目标或总任务,对各子系统进行强有力的协调和控制,努力寻求各子系统之间的最优协调配合,以达到管理大系统整体目标的近似最优。这就是管理大系统的“分解——协调”理论和方法的基本内容。如,某计划部门编制年度生产计划。一般是先由其所属各部门编出各自的局部最优计划(分解),然后由计划部门汇总并予以适当调整,在修改各部门计划的基础上,达到该计划部门的整体计划最优和近似最优(综合)。这些步骤一般要求运用“穷举法”或单纯形法,反复比较,组合与计算,直到充分满意为止。需要指出的是,当某个管理大系统的某一特点比较突出且与总目标直接相关,而其他特点可以忽略不计,就可运用一般控制和最优化的有关理论和方法实现最优控制,达到最优目标。
管理大系统的分解可分为目标分解和模型分解两种。目标分解是把管理大系统的总任务或总目标分解为各子系统的子任务或子目标。例如,企业可将总的生产任务和技术经济指标分配到各车间。通常,管理大系统的目标是可分解的,且其总目标函数可视为各子系统目标函数的代数和。但是,各子系统的相互影响也不容忽视,这种影响就形成了管理大系统数学模型中的相互关联,它对总目标的实现影响极大。因此,关键在于模型分解。即把高阶、高维的管理大系统数学模型分解为低阶、低维的子系统数学模型,网络模型或物理模型,以便于计算、求解并优化。管理大系统的模型分解,实质上就是通过数学的。网络的或物理的方式建模。这就既能突出管理大系统的主要性能,又能克服复杂大系统的“维数灾”,使问题得到简化。就管理系统的数学模型分解而言,目前已有多种方法能够实现其模型简化。如,集结法就适用于线性管理大系统,它能将变量很多的管理大系统模型集结(集中、简化)为变量较少的集结模型,并保证其主要动态性能不变;摄动法则能够将原管理大系统高阶方程中所含的小参数(即对该管理大系统只起次要的、微扰作用的,在某些情况下可不予考虑的参变量)的摄动项(或称微干扰项)设法予以略去,即关联平衡原则和关联预估原则。其实质是根据各子系统偏差的反馈信息,整合协调变量,从而实现对各子系统的协调控制。在各子系统局部最优化基础上,选择最优的协调变量,以满足“关联平衡条件”和“关联预估条件”,从而实现管理大系统整体目标最优化。