1.统计决策理论的概述
统计决策理论是由统计学家A.瓦尔德在1950年提出的一种数理统计学的理论,这种理论把数理统计问题看成是统计学家与大自然之间的博弈;用这种观点把各种各样的统计问题统一起来,以对策论的观点来研究。在此以前,人们对数理统计,主要是着眼于其推断的功能,亦即从观测数据出发对总体作出某种论断。至于由此应该采取什么决策或行动,会产生什么后果,则被认为不属于统计的范畴。瓦尔德的理论则把后面这一部分内容也纳入统计的范围之内,这在数理统计学上是一项革新,有较大的实际意义。
在一个统计问题中,统计工作者掌握的资料是样本X =(x1,x2…,xn),X所来自的总体的分布Fθ中包含的参数θ为未知,而只知道θ所属的集合Θ(Θ为θ所有可能取值的集合,称为参数空间)。但是,采取什么决策最好,则取决于未知的θ值。用形象化的说法,θ是由大自然在参数空间中选定的,人们力图去找到它。大自然掌握了θ的秘密,而这个秘密又通过样本泄露出来,统计工作者的任务就是根据样本 X中所包含的关于θ的信息,去作出良好的决策。例如,一家商店根据抽样决定是否接受一批来货,一个工厂根据市场调查的结果决定某种产品生产多少等,希望所采取的行动取得尽可能好的效果,或者说,使“行动不当”所造成的损失尽可能小。
2.统计决策三要素
可以通过三个要素把一个统计决策问题表达出来。
① 样本空间H与样本分布族{Fθ:θ∈Θ}这个要素规定了问题的概率模型。样本空间是样本可能的取值范围,而样本分布族是样本所可能遵从的分布的集合。
② 行动空间A 它是统计工作者可以采取的单纯策略(或称行动)的集合。例如,设θ为一维参数,要对θ作区间估计,则实轴上任一区间[a,b]构成一个单纯策略,这时行动空间为所有[a,b]构成的集合,即{[a,b]:-∞<a≤b<∞}。若问题是要检验有关θ的假设,则行动空间A由a0(接受假设)和a1(拒绝假设)两个元素构成。
③ 损失函数L统计决策理论有一个基本出发点:所采取的行动的后果可以数量化。设参数真值为θ,统计工作者采取的行动为a,则所遭受的损失可表为a与θ的函数L(θ, a),称之为损失函数。在一个具体问题中,采取什么损失函数最好,是一个需要进行大量调查研究以至理论工作的问题,这也是在使用决策理论时的一个困难点。