正交试验设计

1.正交试验设计表

2.正交试验设计的安排

正交试验设计的关键在与试验因素的安排。通常,在不考虑交互作用的情况下,可以自由的将各个因素安排在正交表的各列,只要不在同一列安排两个因素即可(否则会出现混杂)。但是当要考虑交互作用时,就会受到一定的限制,如果任意安排,将会导致交互效应与其它效应混杂的情况。

因素所在列是随意的,但是一旦安排完成,试验方案即确定,之后的试验以及后续分析将根据这以安排进行,不能再改变。对于部分表,如L18(2*3^7)则没有交互作用列,如果需要考虑交互作用需要选择其它的正交表。

3.正交试验设计的极差分析

在完成试验收集完数据后,将要进行的是极差分析。

极差分析就是在考虑A因素是,认为其它因素对结果的影响是均衡的,从而认为,A因素各水平的差异是由于A因素本身引起的。

用极差法分析正交试验结果应引出以下几个结论:

①在试验范围内,各列对试验指标的影响从大到小的排队。

某列的极差最大,表示该列的数值在试验范围内变化时,使试验指标数值的变化最大。所以各列对试验指标的影响从大到小的排队,就是各列极差D的数值从大到小的排队。

②试验指标随各因素的变化趋势。

③使试验指标最好的适宜的操作条件(适宜的因素水平搭配)。

④对所得结论和进一步研究方向的讨论。

4.较优条件选择

各因素的好水平加在一起,是否就是较优试验条件呢?理论上,如果各因素都不受其它因素的水平变动影响的,那么,把各因素的优水平简单地组合起来就是较好试验条件。但是,实际上选取较好生产条件时,还要考虑因素的主次,以便在同样满足指标要求的情况下,对于一些比较次要的因素按照优质、高产、低消耗的原则选取水平,得到更为结合试验实际要求的较好生产条件。

以上介绍如何分析各因素水平的变动对指标的影响。讨论A因素时,不管其它因素处在什么水平,只从A的极差就可判断它所起作用的大小。对其它因素也作同样的分析,在此基础上选取谙因素的较优水平。

实践中发现,有时不仅因素的水平变化对指标有影响,而且,有些因素间各水平的联合指配对指标也产生影响,这种联合搭配作用称为交互作用。而交互作用应该在试验设计时考虑到。

5.正交试验分析方法

一、直接对比法

直接对比法就是对试验结果进行简单的直接对比。直接对比法虽然对试验结果给出了一定的说明,但是这个说明是定性的,而且不能肯定地告诉我们最佳的成分组合。显然这种分析方法虽然简单,但是不能令人满意。

二、直观分析法

直观分析法是通过对每一因素的平均极差来分析问题。所谓极差就是平均效果中最大值和最小值的差。有了极差,就可以找到影响指标的主要因素,并可以帮助我们找到最佳因素水平组合。

6.正交试验设计的基本思想

考虑进行一个三因素、每个因素有三个水平的试验。如果作全面试验,需作33 = 27次。

Image:正交试验设计示意图.gif

图:正交试验设计示意图

若从27次试验中选取一部分试验,常将A和B分别固定在A1B1水平上,与C的三个水平进行搭配,A1B1C1,A1B1C2,A1B1C3。作完这3次试验后,若A1B1C3最优,则取定C3这个水平,让A1C3固定,再分别与B因素的三个水平搭配,A1B1C3,A1B2C3,A1B3C3。这3次试验作完以后,若A1B2C3最优,取定B2,C3这两个水平,再作两次试验A2B2C3,A3B2C3,然后与一起比较,若A3B2C3最优,则可断言A3B2C3是我们欲选取的最佳水平组合。这样仅作了7次试验就选出了最佳水平组合。

我们发现,这些试验结果都分布在立方体的一角,代表性较差,所以按上述方法选出的试验水平组合并不是真正的最佳组合。

如果进行正交试验设计,利用正交表安排试验,对于三因素三水平的试验来说,需要作9次试验,用“Δ”表示,标在图中。如果每个平面都表示一个水平,共有九个平面,可以看到每个平面上都有三个“Δ”点,立方体的每条直线上都有一个“Δ”点,并且这些“Δ”点是均衡地分布着,因此这9次试验的代表性很强,能较全面地反映出全面试验的结果,这就是正交实验设计所特有的均衡分散性。我们正是利用这一特性来合理的设计和安排试验,以便通过尽可能少的试验次数,找出最佳水平组合。

7.正交试验设计的过程[1]

1)确定试验因素及水平数;

2)选用合适的正交表;

3)列出试验方案及试验结果;

4)对正交试验设计结果进行分析,包括极差分析和方差分析;

5)确定最优或较优因素水平组合。

8.正交试验设计法与遗传算法的联系[2]

(1)正交试验设计法是遗传算法的一种特例,即正交试验设计法是一种初始种群固定的、只使用定向变异算子的、只进化一代的遗传算法。

(2)遗传算法的步骤比正交试验设计法复杂,所需的试验次数也要多于正交试验设计法的试验次数,但它产生的解要优于正交试验设计法产生的解。

(3)遗传算法的隐并行性使得它在处理交互作用项时,效率比正交试验设计法要高。

(4)正交试验设计法可解决一般遗传算法中的最小欺骗问题。